Counting Special Points: Logic, Diophantine Geometry, and Transcendence Theory

نویسنده

  • THOMAS SCANLON
چکیده

We expose a theorem of Pila and Wilkie on counting rational points in sets definable in o-minimal structures and some applications of this theorem to problems in diophantine geometry due to Masser, Peterzil, Pila, Starchenko, and Zannier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open Diophantine Problems

Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...

متن کامل

7 Elliptic Functions and Transcendence

Transcendental numbers form a fascinating subject: so little is known about the nature of analytic constants that more research is needed in this area. Even when one is interested only in numbers like π and eπ that are related to the classical exponential function, it turns out that elliptic functions are required (so far, this should not last forever!) to prove transcendence results and get a ...

متن کامل

Elliptic Functions and Transcendence

Transcendental numbers form a fascinating subject: so little is known about the nature of analytic constants that more research is needed in this area. Even when one is interested only in numbers like π and e which are related with the classical exponential function, it turns out that elliptic functions are required (so far – this should not last for ever!) to prove transcendence results and ge...

متن کامل

Rational Points

is known to have only finitely many triples of positive integer solutions x, y, z for a given n > 2 (Faltings, 1983). In Chapter 11, special situations are described in which more precise information is accessible. For example, if x is in S, then n is bounded by a computable number C5 = Cb(pv ..., p8). From these examples, it should be clear that the book is a mine of information for workers in...

متن کامل

A Proof of the André - Oort Conjecture via Mathematical Logic

INTRODUCTION Extending work of Bombieri and Pila on counting lattice points on convex curves [3], Pila and Wilkie proved a strong counting theorem on the number of rational points in a more general class of sets definable in an o-minimal structure on the real numbers [37]. Following a strategy proposed by Zannier, the Pila-Wilkie upper bound has been leveraged against Galois-theoretic lower bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010